
IET Computers and Digital Techniques

Research Article

Fast and Low-Power Leading-One Detectors
for Energy-Efficient Logarithmic Computing
Mohammad Saeed Ansari, Shyama Gandhi, Bruce F. Cockburn, Jie Han

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.

� {ansari2, smgandhi, cockburn, jhan8} @ ualberta.ca

This work was supported financially by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Project No. RES0018685
and RES0025211).

Abstract: The logarithmic number system (LNS) can be used to simplify the computation of arithmetic functions, such as mul-
tiplication. This article proposes three leading-one detectors (LODs) to speed up the binary logarithm calculation in the LNS.
The first LOD (LOD I) uses a single fixed value to approximate the d least significant bits (LSBs) in the outputs of the LOD. The
second design (LOD II) partitions the d LSBs into smaller fields and uses a multiplexer to select the closest approximation to the
exact value. These two LODs help with error cancellation as they introduce signed errors for inputs N < 2d. Additionally, a scaling
scheme is proposed that scales up the input N < 2d to avoid large approximation errors. Finally, an improved exact LOD (LOD III)
is proposed that only passes half of the input N to the LOD: the more significant half is passed if there is at least one ‘1’ in that
half; otherwise, the less significant half. Our simulation results show that the 32-bit LOD III can be up to 2.8×more energy-efficient
than existing designs in the literature. The Mitchell logarithmic multiplier and a neural network are considered to further illustrate
the practicality of the proposed designs.

1 Introduction

Data representation has a significant impact on the performance
of arithmetic circuits [1, 2]. Using the logarithmic representation
simplifies several important arithmetic operations, such as multi-
plication, division, roots and powers. In the logarithmic number
system (LNS), these operations are converted to shift and addi-
tion/subtraction operations. Therefore, they can be implemented
with less hardware complexity than conventional designs [3, 4].

Errors are inevitable while computing in an LNS due to: (1) the
limited bit precision and (2) the approximation error when comput-
ing the logarithmic function [5, 6]. Hence, logarithmic arithmetic
circuits could be used in error-tolerant applications for which there
is a range of acceptable, good-enough results rather than a uniquely
required result [7, 8], such as multimedia processing and machine
learning. The main justifications for approximate arithmetic in these
applications are human perceptual limitations and inherently noisy
inputs [9–11]. Whenever it is necessary, piece-wise linear approxi-
mations over a finely subdivided input domain or iterative techniques
can be used to compensate for the accuracy loss when comput-
ing log(x) at the cost of additional hardware, power, and latency
[12, 13].

In an LNS, the binary logarithm of the input operand is computed
using a leading-one detector (LOD), as phase 1. Then the required
operations (shift and/or addition/subtraction) are performed during
phase 2. Finally, the antilogarithm of the result is computed in phase
3. The two main techniques for designing a 2n-bit LOD are: (1)
Partition the 2n bits into groups of 4 bits and evaluate each group
using a 4-bit LOD [12, 14]. Logical OR gates and 4-bit LODs are
then used to select the outputs of the LODs [14]. (2) One continuous
block evaluates the 2n input bits from the most significant towards
the least significant bits. Once the most significant ‘1’ is found, the
remaining bits are cleared to zeros for a one-hot encoded output.

The first method, as described in the last paragraph, to design
2n-bit LOD is much faster than the second one (according to our
simulations, by about 3×) and, consequently, is a better approach
for designing LODs. Note that the LNS is used to speed up multipli-
cations and so faster designs are preferable.

According to our simulation results, phase 1 is the most hardware-
inefficient phase in the Mitchell logarithmic multiplier, consuming
the most hardware resources (i.e. more than 49% of the area), while
being the most energy-inefficient (more than 54% of the entire
energy) compared to the other two phases. Hence, it is important
to reduce the complexity of this phase by designing more efficient
components. The common element in phase 1 in all arithmetic units,
which plays a significant role in the performance of the system, is the
LOD [14, 15]. This article proposes two approximate LOD designs.
We studied 32-bit LOD designs using 4-bit LOD slices and found
that using approximation for the least significant LODs can signif-
icantly reduce the hardware cost while preserving the accuracy of
a well-known logarithmic multiplier, the Mitchell multiplier [16].
Both designs approximate or use 16 least significant bits (LSBs) of
the inputs to eliminate the four least significant 4-bit LODs

LOD I approximates the 16 LSBs with a constant bias, while LOD
II approximates the 16 LSBs to one of four constant biases, which
is selected using the output from a simple OR operation on the input
bits of the four least significant LODs. In this way, LOD II partitions
the 16 LSBs into four 4-bit fields and increases the accuracy by using
a multiplexer that selects the closest approximation to the accurate
LOD output.

The optimal number of bits to be approximated (i.e., 16) was
obtained using the relative mean error distance (MRED) error met-
ric on the Mitchell multiplier after considering 10 million randomly
generated input combinations. The MRED was evaluated for dif-
ferent numbers of approximation bits and 16 appeared to be the
most hardware-efficient choice that also preserves the accuracy of
the resulting conventional Mitchell multiplier. Moreover, the six-
teen LSBs of the adder that sums the base-2 logarithm of the input
operands are also approximated with alternating ones and zeros for
further hardware savings. Due to the use of approximation in the 16
LSBs, the new designs increase the signed errors for inputs of less
than 216, which is a relatively small range (i.e. 0.001%) of the 32-
bit input domain. But for larger inputs the output result is equal to
that of the exact LOD, implying an accurate design. Thus a scaling
scheme is proposed that scales up the inputs when desirable, i.e. for
inputs N < 216, to avoid large errors and to match the accuracy of

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2019 1



the exact LOD for the entire range of input numbers. Several scaling
factors are considered for each design and the effects of scaling on
the hardware costs are studied.

Moreover, the proposed approximate LOD designs I and II are
applied in the conventional Mitchell logarithmic multiplier, which is
then used to replace the exact multiplier in a neural network (NN)
to analyze the effects of approximations in an error-tolerant applica-
tion. A multilayer perceptron (MLP) was used to classify the Mixed
National Institute of Standards and Technology (MNIST) dataset
[17]. Our simulation results show that the proposed designs preserve
the classification accuracy, while reducing the hardware cost.

Further, a novel design, LOD III, is proposed that uses an exact
16-bit LOD to find the position of the leading-one in a 32-bit input.
Note that unlike LOD I and LOD II, LOD III is not an approximate
design and is as accurate as the conventional 32-bit LOD. If the most
significant ‘1’ happens to be among the 16 MSBs, only the 16 MSBs
are passed into the LOD; otherwise, the 16 LSBs are passed to the
LOD. This significantly reduces the hardware complexity and speeds
up the multiplication.

Some of our preliminary work was published in [18]. In this
article, the two approximate LOD designs in [18] are modified
to improve their accuracy. Specifically, an up-scaling technique is
added to both designs and we show how the performance of each
design changes with different scaling factors, ranging from 2 to 14
with a step size of 2. Additionally, a novel design (LOD III) is pro-
posed to use only a 16-bit LOD instead of the conventional 32-bit
LOD for a 32-bit input. Despite halving the LOD width, the pro-
posed LOD III is still a fully-accurate design. Note that LOD III can
be seen as the logical progression of scaling applied to approximate
LOD designs. In fact, we realized that for a scaling factor of 16,
we do not need to approximate the lower half of the input and the
resulting LOD III design can be made exact.

The rest of this article is organized as follows: Section 2 reviews
the conventional approximate Mitchell multiplier and 4-bit LOD
designs. Section 3 describes the three proposed LODs. Section
4 presents the accuracy and hardware analysis for the proposed
designs. The Mitchell logarithmic multiplier and an MLP for classi-
fying the MNIST dataset are considered in Section 5 as applications
for the proposed LODs. Finally, the main conclusions are given in
Section 6.

2 Background

2.1 Conventional 4-bit LODs

A common strategy for building larger LODs, such as 16-bit and 32-
bit designs, is to use 4-bit LOD slices [14]. A 4-bit LOD, as shown
in Fig. 1, produces a one-hot 4-bit output with one bit set to ‘1’ at the
position of the leading-one and the remaining bits cleared to ‘0’. The

Fig. 1: A 4-bit leading-one detector [14].

input to this LOD is a 4-bit vector a and the output is a 4-bit vector
d. Multiplexers are used to find the position of the leading-one. The
LOD circuit evaluates in a ripple fashion from the most significant
bit (MSB) to the LSB. One can verify that the worst-case delay of
the circuit corresponds to the 4-bit input binary word “0001”.

In another 4-bit LOD design, the multiplexers are replaced with
2-input logic gates, i.e. AND, OR, and NOT, to improve the perfor-
mance by reducing the delay [19]. The higher-level 4-bit LOD as in
Fig. 1 is used as our main building block for larger LOD designs.

2.2 The Conventional Mitchell Multiplier

Let A and B be the two positive integer inputs to the multiplier. There
exist positive integers, k1 and k2, for which A and B can be factored
as [16]:

A = 2k1(1 +m1), 0 ≤ m1 < 1. (1)

B = 2k2(1 +m2), 0 ≤ m2 < 1. (2)

The leading-one positions for A and B and their corresponding
mantissas are denoted by k1 and k2 and m1 and m2, respectively [16].
Since A and B are unsigned integers, m1 and m2 can be considered
to be given by the bits to the right of the leading-one for both inputs,
i.e. bit positions k1 − 1 down to 0 for A and, similarly, bit positions
k2 − 1 down to 0 for B.

Mitchell proposed approximating log2(1 + x) with x. Following
this approximation, the base-2 logarithm of the two inputs A and B
can be calculated as:

log2A ≈ k1 +m1. (3)

log2B ≈ k2 +m2. (4)

Since log2(A×B) = log2A+ log2B, the binary logarithm of
the product A×B is approximated by adding (3) and (4):

log2(A×B) ≈ k +m, (5)

where k = k1 + k2 andm = m1 +m2. The approximated product
is then obtained by taking the anti-logarithm of (5). To do so, the
position of the most significant ‘1’ is determined by the value of k
and then the mantissa m is given by the bits appended to the right
of the most significant ‘1’. Note that the carry out from the sum
m1 +m2 of the mantissa fields is used as the carry-in to determine
the position of leading one vector obtained by addition of k1 and k2.
Hence, the Mitchell logarithmic algorithm can be represented as:

A×B ≈


2k(1 +m), m < 1,

2k+1m, 1 ≤ m < 2.

(6)

Three cases can occur based on the position of the most significant
‘1’: (1) There are not enough output bits to store all of the mantissa
bits. Hence, some less significant bits of m must be discarded. (2)
The mantissa bits exactly fit into the available bits. (3) The number
of output bits is more than the width of m. The excess bits are filled
with zeros.

Fig. 2 shows an illustrative example of an 8-bit Mitchell multi-
plication with inputs 40 and 139. Following the above discussion,
k1 = 5, k2 = 7, m1 = 01000, and m2 = 0001011 in Fig. 2. Note
that two zeros are appended to mantissa m1 to make its width equal
to that ofm2. The next step is concatenating k1 withm1 and k2 with
m2 to obtain the approximate base-2 logarithm of each of the input
operands. The approximate logarithms are then added to produce k
(shown in dark grey) and m (shown in light grey) as specified in (5).
The approximated product is then ‘1’ at bit position 12, followed by
the mantissa m = 0101011, and five zeros of padding.

2.3 MLP NN and the MNIST dataset

MLPs are a class of feed-forward NNs (i.e., NNs wherein the con-
nections between neurons do not form a cycle) that consist of an
input layer, an arbitrary number of hidden layers, and an output
layer. They are trained using the back-propagation supervised learn-
ing technique. Fig. 3 shows a simple MLP with n, k, and m neurons
in the input, hidden, and output layers, respectively.
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Fig. 2: Example of Mitchell approximate multiplication.

Fig. 3: Structure of a feed-forward NN.

MNIST is a dataset of handwritten numbers that consists of a
training set of 60,000 and a test set of 10,000 28×28 images and
their labels [17]. We used an MLP network with 784 input neurons
(one for each pixel of the monochrome image), 300 neurons in the
hidden layer and 10 output neurons. The outputs are interpreted to be
the probability of classification of an input image into the 10 target
classes for the digits 0 to 9.

3 Proposed LOD Designs

The exact 32-bit LOD can be implemented using 4-bit LOD circuits,
as shown in Fig. 4. The 32-bit input is partitioned into 8 fields of
4-bits each that are evaluated by the first stage of eight 4-bit LODs
operating in parallel. The two 4-bit LODs in the second stage deter-
mine the leading-one in the two 16-bit fields d31 to d16 and d15 to
d0. Finally, the 2-bit LOD in the third stage determines whether the
leading-one lies in d31 to d16, or in d15 to d0.

The output of the 2-bit LOD in the third stage (i.e., “00",“01"
or “10") provides the select bits for the two groups of 4-bit multi-
plexers. The output of the 4-bit LOD in the second stage is passed
through if the select line is ‘1’ or else “0000" will be the output of
the multiplexers. The combined 8-bit output from the multiplexers
forms the select inputs for the eight groups of 4-bit multiplexers in
the last stage. Only one bit from the 8-bit select word will be ‘1’ and
the multiplexer will pass the 4-bit decoded word obtained from that
first-stage 4-bit LOD. The final 32-bit output has only one bit set to
‘1’ (at the leading one position) with the remaining bits cleared to
‘0’.

3.1 LOD design I

This design approximates the 16 LSBs of the LOD with a single
fixed bias. If the input to the LOD is greater than 216, there will be no

error in calculating the position of the leading one. Otherwise, inputs
of less than 216 will often lead to errors in the leading-one position.
Simulation was performed to determine the maximum number of
bits that can be approximated in the LOD without causing any loss
of accuracy in the final Mitchell product. Based on the accuracy eval-
uation results presented in the next section, we found that the four
least significant 4-bit LODs in Fig. 4 can be safely approximated
with a hexadecimal constant bias of “0400”, see Fig. 5.

With this bias, sometimes the obtained approximated product will
be higher and sometimes lower than the Mitchell product. This
feature lets us benefit from a double-sided error distribution and,
consequently, error cancellation, which can be helpful in iterative
and repetitive applications. Since the four least significant 4-bit
LODs in the first stage have been eliminated (due to a known fixed
bias), the least significant 4-bit LOD in the second stage that is
shown as “LOD A" in Fig. 4 and the OR-gates are also removed
to further simplify the structure.

3.2 LOD design II

In LOD I, fixing the 16 LSBs to a constant value for some input
pairs can cause a relatively large error. The second LOD design pro-
posed in this subsection is not as hardware-efficient as LOD I but it
can increase the accuracy. LOD II approximates the outputs of the
four least significant 4-bit LODs to one of the four constant biases
0x“0004", 0x“0040", 0x“0400" and 0x“4000" based on the input bits
to these four LODs. The biases were chosen based on the priority
of the OR gates, with OR4 having the highest and OR1 having the
lowest priorities, as shown in Fig. 6. Table 1 clearly shows how the
priority of the OR-gates affect the 16-bit bias selection, where O4,
O3, O2, and O1 represent the output of each OR gate, as shown in
Fig. 6.

Table 1 Bias selection for approximate LOD II.
O4 O3 O2 O1 Bias for LOD approximation
1 X X X 0x“4000"
0 1 X X 0x“0400"
0 0 1 X 0x“0040"
0 0 0 1 0x“0004"

Note that once the one 4-bit segment with a nonzero output is
found, the output of the LOD in that segment is approximated by the
bias “0100”. When the segment is selected, three cases may occur:
(1) the outputs of the exact LOD for some inputs (4 out of 16) are
less than this bias, (2) the outputs of the exact LOD for some inputs
(8 out of 16) are greater than this bias, and (3) the outputs of the
exact LOD for some inputs (4 out of 16) equal this bias. Table 2
shows the three cases within a 4-bit segment. This selection helps
with the double-sided error distribution of the proposed LOD.

Table 2 The three error cases with the bias for approximate LOD II.
4-bit input Exact LOD output Fixed bias Error

0000 0000 0100 High
0001 0001 0100 High

0010 – 0011 0010 0100 High
0100 – 0111 0100 0100 Exact
1000 – 1111 1000 0100 Low

3.3 Scaling Technique

As explained above, when the inputs to the multiplier are less than
216, the approximation error could be relatively large. Thus a scaling
technique is proposed to overcome this issue.

A scaling factor s, where s ∈ {2, 4, 6, ..., 12, 14} is selected and
used to scale up the small input operands. The two multiplier inputs
are each compared with the threshold 231−s. If either of them is less
than or equal to the threshold, that input is shifted to the left by s
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Fig. 4: A 32-bit leading-one detector [14].

Fig. 5: Approximation of the LOD using a single fixed bias.

Fig. 6: Approximation of a LOD using a multiplexing scheme.

bits before being input to the LOD. If input A is shifted by q1 bits
and inputB is shifted by q2 bits, the final product needs to be shifted
to the right by q1 + q2 bits. The scaling factor s = 0 will denote no
scaling.

Comparing each input operand with the threshold value is a bot-
tleneck of the proposed scaling technique. We solved this issue by
using a simple, hardware-efficient solution that uses logical OR
gates. The OR logic is performed on the s ≥ 1 MSBs of the inputs.
If the result is zero, that input can safely be shifted to the left by s
bits. Otherwise, one or a few MSBs would be discarded by shifting,

which would introduce a huge error. An example of this process is
shown in Fig. 7 for s = 6.

Fig. 7: An example of the proposed scaling technique for s = 6.

As shown in Fig. 7, the final output of the logical OR gate-tree is
used as a multiplexer’s select signal. If the select is ‘1’, there is a ‘1’
among the 6 MSBs and, therefore, the input operand N should not
be shifted and we have to pass N to the LOD. On the other hand,
a select of ‘0’ means that there is no ‘1’ in the 6 MSBs and we can
safely input the shifted version of N to the LOD. Note that the LOD
in Fig. 7 could be either an approximate or a fully-accurate design.

This design works with the scaling factor s ∈ {2, 4, 6, ..., 12, 14},
however we realized that the LOD design can be notably simplified
for s = 16, resulting in a hardware-efficient accurate LOD, which is
discussed below.
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3.4 LOD design III

The main idea of the LOD III design is to use an exact n-bit LOD to
find the position of the leading-one of a 2n-bit number. The 2n-bit
input number N is divided into two halves, i.e. the more signif-
icant half (NH = N2n−1:n) and the less significant half (NL =
Nn−1:0). An OR gate tree, similar to that shown in Fig. 7, is used
to find out whether or not there is a ‘1’ in NH . The two possible
scenarios are as follows:

• There is a ‘1’ in NH . In this case, NH is the input to an exact
n-bit LOD. Since the output bit width of a conventional LOD for a
2n-bit number is 2n bits, n zeros are appended to the lower half of
the result as LSBs.
• There is no ‘1’ in NH . In this case, NL is input to an exact n-
bit LOD. With the same analogy as in the former case, n zeros are
appended to the upper half of the result as MSBs.

The block diagram of LOD III is shown in Fig. 8. Note how
16 MSBs are evaluated using an OR gate tree and the final result,
i.e. signal sel, is used as the select line of a multiplexer. Similar to
the scaling technique, sel = ‘1’ means that there is at least one ‘1’
within the 16 MSBs (NH ) and, therefore, NH is the input to the
16-bit LOD. Otherwise, NL is used as the input to the 16-bit LOD.
Note that in Fig. 8, the symbol ‘&’ denotes vector concatenation and
not logical bit-wise AND.

Fig. 8: LOD III, which uses a 16-bit LOD to find the position of the
leading one in a 32-bit number.

Although LOD III is only evaluated in a logarithmic multiplier in
this article, it is applicable to all of the other logarithmic arithmetic
units that use a LOD, such as logarithmic squaring and square root
functions and logarithmic dividers.

4 Simulation Results

This section provides simulation results for the proposed LODs. This
is the first work on approximate LODs and, therefore, we can only
compare LOD I and LOD II in the accuracy analysis. For the hard-
ware cost analysis, on the other hand, the two existing references in
the literature are considered for comparison purposes.

4.1 Accuracy analysis

The accuracy evaluations were performed using MATLAB models of
LOD I and LOD II. We evaluated their accuracy using the Average
Error (AE), which considers the error sign, and the Mean Relative
Error distance (MRED) for 32-bit LODs. Since the both designs gen-
erate accurate results for inputs greater than 216, and considering
that 216 is only 0.001% of the 32-bit input domain, almost all the
error metrics were zero (no error), even for 109 randomly generated
inputs. Hence, we limited the maximum input to 218, 220, and 222

and the results are provided in Table 3.

Table 3 Accuracy analysis of the two approximate LOD I and LOD II designs.

LOD Circuit max. input=218 max. input=220 max. input=222
AE MRED AE MRED AE MRED

LOD I -1.0005 0.0713 -0.2493 0.0178 -0.0626 0.0045
LOD II -0.0665 0.0147 -0.0167 0.0036 -0.0042 0.0009

As shown in Table 3, the error behavior improves as the maximum
input increases. Also, the results in this table clearly show that the
LOD II is more accurate than the LOD I.

Fig. 9 plots the error, N − 2logN , for when 2logN is calculated
using the exact LOD, and three variants (with different scaling fac-
tors) of approximate designs LOD I and LOD II. Note that LOD III is
an exact design and so its accuracy matches the conventional LOD.
Thus, LOD III is not included in these two figures.

As shown in the four sub-figures of Figs. 9, Mitchell Multiplier
using LOD I and II results in larger approximation errors than the
conventional Mitchell’s design for inputs of up to 216, but the errors
are identical for all three designs for inputs of greater than 216.
Although the error introduced by using approximate LODs is larger
than that of the exact LOD for inputs less than 216, the maximum
error over the entire input range, i.e. 0 ≤ N < 232, is actually the
same for both the approximate and exact LOD designs. It is also
shown in Fig. 9 how the scaling improves the accuracy and helps the
approximate LODs to behave more like the exact LOD.

4.2 Hardware analysis

The three proposed designs are compared against three LOD designs
in the literature in terms of their hardware characteristics. The only
three LODs in the literature, to the best of our knowledge, are those
reported in [14], [19], and [20]. Table 4 provides the results of
this comparison with respect to the area, critical path delay, power
consumption, and power-delay product (PDP).

Table 4 Hardware comparison of the exact and approximate LODs.
LOD

Circuit
Area

(µm2)
Delay
(nS)

Power
(µW )

PDP
(fJ)

LOD I 86.00 0.38 6.22 2.36
LOD II 105.42 0.38 8.22 3.12
LOD III 51.24 0.28 5.94 1.66

LOD [14] 117.83 0.42 11.33 4.75
LOD [19] 109.67 0.43 11.36 4.88
LOD [20] 95.30 0.38 8.837 3.35

As can be seen, the proposed exact LOD III is the most hardware-
efficient design. Unlike approximate designs LOD I and LOD II,
LOD III does not use the scaling approach and, therefore, it is
smaller, faster, and more power-efficient than the other two proposed
designs. It is worth mentioning that the proposed approximate LOD
I, although less hardware-efficient than LOD III, is still smaller and
more energy-efficient than the exact LOD designs. LODs I and II
can be used in applications (with or without the scaling part), where
small signed inaccuracies can be beneficial, e.g. neural networks
[21].
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Fig. 9: Error in the logarithm approximations for four different
scaling factors.

5 Applications of the LODs

Two applications are considered in this section for the proposed
LODs: (1) the logarithmic multiplier, and (2) neural networks.

5.1 Logarithmic multiplier

Perhaps the most common application of logarithms to the imple-
mentation of arithmetic, judging from the literature, is multiplica-
tion. Mitchell is the most well-known logarithmic multiplier that
is often used as the baseline design for many logarithmic arith-
metic circuits. Although the benefits of using the proposed LODs
are only shown by using them in the Mitchell multiplier, they are
also applicable to any other logarithmic circuit that uses LODs.

The accuracy evaluations were performed using MATLAB mod-
els of the logarithmic multipliers. We evaluated their accuracy using
the MRED for 32-bit multiplier designs with 104, 105, 106 and 107

randomly chosen unsigned integer pairs. The MRED metric gives
the average relative error distance between the approximate and the
exact products. From the simulation results, it was found that the
obtained value of MRED = 0.0385 does not change after 106 iter-
ations for all of the designs. With this MRED value, the four least
significant LODs in Fig. 4 can be approximated.

The adder that sums the logarithms is also a significant part of the
Mitchell multiplier and it can be approximated to further reduce the
hardware cost. The authors in [12] showed that approximating the
adder that sums the base-2 logarithms of the input operands does
not reduce the accuracy of the Mitchell multiplier, and instead it
improves the accuracy. Therefore, for the adder, the approximation
is done by fixing the optimum number of output LSBs with a bias of
alternating ones and zeros. Using simulation we determined that the
16 LSBs can be approximated in this way with no loss of accuracy in
the product. By choosing an alternating sequence of ones and zeros,
the Mitchell multiplier will sometimes overestimate and sometimes
underestimate the true product resulting in a roughly symmetrical
error distribution. This is a better approach than using all zeros
(a.k.a. truncation) or all ones as it preserves the double-sided error
distribution in the final product [7].

Fig. 10: MRED for the 16-bit Mitchell multiplier with LOD II.

Fig. 10 plots the MRED of the Mitchell multiplier with LOD II
for different t1 and t2 parameters, where t1 is the number of LSBs
in LODs to be approximated and t2 is the number of LSBs approx-
imated for the adder. As t1 and t2 increase, the MRED increases.
The optimum value of these parameters is chosen to match the accu-
racy (in MRED) of the Mitchell multiplier. For example, t1 = 4 and
t2 = 6 are the optimum values for the 16-bit multiplier in Fig. 10.
The MRED is plotted for a 16-bit version of the proposed design
since it provides a clearer visualization than the 32-bit version. We
observed that LOD I has a similar behavior and, therefore, the results
are only shown for LOD II.

Furthermore, the Mitchell multiplier with the conventional LOD
and several variants of the proposed LODs were implemented using
the VHDL hardware description language using the Vivado design
tool and then synthesized using the Synopsys Design Compiler for
ST Micro’s 28-nm CMOS process. The hardware measurements for
four key metrics, area, critical path delay, power consumption, and
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Fig. 11: PDP vs. area for Mitchell multiplier with four different LOD designs.

power-delay product (PDP), were extracted. Approximation of four
least significant LODs in the first stage and of one least significant
LOD in the second stage together with 16 LSBs approximated for
the adder yields the hardware savings shown in Table 5, where the
index e in Mitchell with LOD I-e denotes the scaling factor.

As shown in Table 5, the Mitchell multiplier with approximate
and exact LODs is 24.47% and 30.35% faster than the Mitchell with
the LOD proposed in [14], respectively. In terms of area, approxi-
mate LOD I and LOD II with scaling result in a larger multiplier than
the conventional Mitchell multiplier; however, the baseline LOD I,
LOD II, and the exact LOD III all result in smaller multipliers than
the standard Mitchell multiplier. Finally, all of the proposed LOD
designs reduce the power consumption of the Mitchell multiplier.

Table 5 Hardware characteristics of the Mitchell multiplier with different LODs.

LOD circuit Power
(mW )

Delay
(nS)

Area
(µm2)

PDP
(pJ)

LOD [14] 0.74 4.25 2257.21 3.14
LOD [20] 0.73 4.25 2213.48 3.12
LOD I-0 0.50 3.21 2126.00 1.60
LOD I-2 0.59 3.21 2316.13 1.89
LOD I-4 0.58 3.21 2311.23 1.86
LOD I-6 0.58 3.21 2303.73 1.86
LOD I-8 0.57 3.21 2299.16 1.83
LOD I-10 0.57 3.21 2292.63 1.83
LOD I-12 0.57 3.21 2285.12 1.83
LOD I-14 0.56 3.21 2281.20 1.79
LOD II-0 0.51 3.21 2164.84 1.63
LOD II-2 0.60 3.21 2354.97 1.92
LOD II-4 0.59 3.21 2350.08 1.89
LOD II-6 0.58 3.21 2342.57 1.86
LOD II-8 0.57 3.21 2338.00 1.83

LOD II-10 0.57 3.21 2331.47 1.83
LOD II-12 0.57 3.21 2323.96 1.83
LOD II-14 0.57 3.21 2320.05 1.83
LOD III 0.56 2.96 2173.66 1.65

For better visualization of the reported results in Table 5, the PDP
vs. the area for all of the designs in Table 5 are plotted in Fig. 11.
All of the variants of the proposed designs (with different scaling
factors) are shown in this figure. Smaller designs with lower energy
consumption, i.e. the designs in the bottom-left corner are preferable.

The normalized MRED-PDP product can be used as a metric for
comparing approximate digital circuits with respect to both hard-
ware and error metrics [10, 11]. However, all of the proposed designs
in this article have the same accuracy (in terms of MRED) and,
therefore, the MRED-PDP product is not a useful discriminating

metric. Thus the PDP alone is used to identify the best of the pro-
posed designs. The results in Table 5 show that using LOD III not
only reduces the area, it also improves the energy efficiency of the
Mitchell multiplier by 47.69%. Although all of the designs have the
same MRED, LOD III is an exact design and, therefore, it is selected
as the best of the proposed designs. As mentioned before, the main
idea behind LOD III, i.e. using n-bit LOD for a 2n-bit number, can
be used to design more energy efficient LODs of different sizes.

5.2 Neural networks

An MLP with 784 input neurons (the images for the MNIST dataset
are 28×28 and, therefore, 784 input neurons are required), a hidden
layer of 300 neurons and a 10-neuron output layer is considered to
classify the MNIST dataset.

The exact multipliers were replaced with several configurations
of the Mitchell logarithmic multiplier, i.e. with different LODs and
the Top-1 classification accuracy comparison is plotted in Fig. 12.
As mentioned before, the LODs are designed so that all of the
resulting multipliers have the same MRED and, therefore, only the
conventional and base LOD I and LOD II (i.e. without scaling) are
considered in Fig.12.

n=32 n=22 n=21 n=20
-14

-12

-10

-8

-6

-4

-2

0

N
N

 a
c

c
u

ra
c

y
 c

o
m

p
a

ri
s

o
n

 o
f 

M
it

c
h

e
ll

 m
u

lt
ip

li
e

r 
w

it
h

d
if

fe
re

n
t 

L
O

D
s

 w
it

h
 r

e
s

p
e

c
t 

to
 t

h
e

 e
x

a
c

t 
m

u
lt

ip
li

e
r 

(%
)

LOD I

LOD II

Fig. 12: Comparison of the Top-1 classification accuracy of the
MNIST dataset with Mitchell multiplier with different LODs.

The classification accuracy using the exact multipliers is 97.81%
in our simulations. This value is used as the golden result in the
comparisons in Fig. 12. The Mitchell multiplier with a conventional
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exact LOD (any of the previously discussed designs, including LOD
III, [20], [14], and [19]) achieves 97.76% accuracy. Note that in a 32-
bit design, the inputs and synaptic weights should be scaled to 32-bit
values, however, we scaled them to 20-bit, 22-bit, and 32-bit values
(n in Fig. 12) to better show the differences. Since the accuracy of
the Mitchell with the exact LOD is independent of n, it is not plotted
in this figure and only the LOD I and II based designs are compared.

As the results in Fig. 12 show, LOD I causes more degradation
in the MLP accuracy. This was expected as LOD I, unlike LOD
II, uses a constant bias. Clearly, worse accuracies are achieved as
n decreases: there is only 0.02% accuracy degradation going from
32-bit to 22-bit designs (97.76% vs. 97.74%) and then the accu-
racy rapidly drops, especially for LOD I, for n < 21. The results
in this figure show that the approximate LODs can be safely (with
proper scaling) used in an error-tolerant application without causing
a noticeable loss in the output accuracy.

6 Conclusion

This article proposes two fast and low-power approximate LOD
designs that can be used instead of an exact LOD. LOD I approx-
imates the four least significant 4-bit LODs with a single fixed bias.
LOD II, on the other hand, approximates the four least significant
4-bit LODs with one of four fixed biases chosen using a priority
encoder controlled multiplexer. The adder that is used to sum the
base-2 logarithms of the input operands is also approximated by
using alternating ones and zeros for the 16 output LSBs. For smaller
inputs, depending on the input scaling factor, approximate designs,
LOD I and II can have large errors. To overcome the large errors for
small numbers, an input scaling scheme is proposed. Considering a
scaling factor s, if there is no ‘1’ in the s MSBs of the 32-bit input
N , N is shifted to the left by s bits. We observed that this helps the
approximate LOD designs to better match the accuracy of the exact
LOD. Moreover, an exact 16-bit LOD is proposed (LOD III) that is
used to find the position of the leading-one in a 32-bit number N .
The more significant half of N , NH , is searched for ‘1’. If at least
one ‘1’ is found, NH is input to the 16-bit LOD III; otherwise, the
less significant half of N , NL, is used as the input to LOD III.

The proposed LODs with different scaling factors are used in
the Mitchell logarithmic multiplier, where the approximate LODs I
and II achieve PDP reductions of 19.74% and 18.83%, respectively.
The exact LOD III, however, reduces the PDP by 24.89% compared
to the same conventional Mitchell multiplier. Furthermore, LOD
III makes the Mitchell multiplier 1.4× faster. The Mitchell multi-
plier with different LODs is then used in an MLP that classifies
the MNIST dataset. Our simulation results show that the approxi-
mate LOD I and II only slightly reduce the classification accuracy
for input bit-widths exceeding 20 compared to when the exact LOD
is used in the Mitchell multiplier.
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